光透射是什么?在实际生活中有什么应用?

生活中的物理小知识汇总

  在平凡的学习、工作、生活中,大家都经常看到物理的身影吧,以下是小编帮大家整理的生活中的物理小知识汇总,欢迎阅读,希望大家能够喜欢。

  生活中的物理小知识 篇1

  民谚俗语中的物理知识

  在日常生活中,我们经常会接触到一些民谚、俗语,这些民谚、俗语蕴含着丰富的物理知识,我们平时如果注意分析、了解一些民谚、俗语,就可以在实际生活中深化知识,活化知识,这对培养我们分析问题、解决问题的能力是大有帮助的。下面列举几例:

  1、小小称砣压千斤――根据杠杆平衡原理,如果动力臂是阻力臂的几分之一,则动力就是阻力的几倍。如果称砣的力臂很大,那么"一两拨千斤"是完全可能的。

  2、破镜不能重圆――当分子间的距离较大时(大于几百埃),分子间的引力很小,几乎为零,所以破镜很难重圆。

  3、摘不着的是镜中月 捞不着的是水中花――平面镜成的像为虚像。

  4、人心齐,泰山移――如果各个分力的方向一致,则合力的大小等于各个分力的大小之和。

  5、麻绳提豆腐--提不起来――在压力一定时,如果受力面积小,则压强就大。

  6、真金不怕火来炼,真理不怕争辩――从金的熔点来看,虽不是最高的,但也有1068℃,而一般火焰的温度为800℃左右,由于火焰的温度小于金的熔点,所以金不能熔化。

  7、月晕而风,础润而雨――大风来临时,高空中气温迅速下降,水蒸气凝结成小水滴,这些小水滴相当于许多三棱镜,月光通过这些"三棱镜"发生色散,形成彩色的月晕,故有 "月晕而风"之说。

  础润即地面反潮,大雨来临之前,空气湿度较大,地面温度较低,靠近地面的水汽遇冷凝聚为小水珠,另外,地面含有的盐分容易吸附潮湿的水汽,故地面反潮预示大雨将至。

  8、长啸一声,山鸣谷应――人在崇山峻岭中长啸一声,声音通过多次反射,可以形成洪亮的回音,经久不息,似乎山在狂呼,谷在回音。

  9、但闻其声,不见其人――波在传播的过程中,当障碍物的尺寸小于波长时,可以发生明显的衍射。一般围墙的高度为几米,声波的波长比围墙的高度要大,所以,它能绕地高墙,使墙外的人听到;而光波的波长较短(10-6米左右),远小于高墙尺寸,所以人身上发出的光线不能衍射到墙外,墙外的人就无法看到墙内人。

  10、开水不响,响水不开――水沸腾之前,由于对流,水内气泡一边上升,一边上下振动,大部分气泡在水内压力下破裂,其破裂声和振动声又与容器产生共鸣,所以声音很大。水沸腾后,上下等温,气泡体积增大,在浮力作用下一直升到水面才破裂开来,因而响声比较小。

  11、猪八戒照镜子--里外不是人――根据平面镜成像的规律,平面镜所成的像大小相等,物像对称,因此猪八戒看到的像和自已"一模一样",仍然是个猪像,自然就"里外不是人了"。

  12、水火不相容――物质燃烧,必须达到着火点,由于水的比热大,水与火接触可大量吸收热量,至使着火物温度降低;同时汽化后的水蒸气包围在燃烧的物体外面,使得物体不可能和空气接触,而没有了空气,燃烧就不能进行。

  13、洞中方一日,世上已千年――根据爱因斯坦的相对论,在接近光速的宇宙飞船中航行,时间的流逝会比地球上慢得多,在这个"洞中"生活几天,则地球上已渡过了几年,几十年,甚至几百年,几千年。

  14、千里眼,顺风耳――人们利用电磁波传送声音和图像信号,使古代神话中的"千里眼,顺风耳"变为现实。并且人类的视野已远远超过了"千里"。

  15、坐地日行八万里――由于地球的半径为6370千米,地球每转一圈,其表面上的物体"走"的路程约为

  40003.6千米,约8万里。这是毛泽东吟出的诗词,它还科学的揭示了运动和静止关系――运动是绝对的,静止总是相对参照物而言的。

  16、釜底抽薪――液体沸腾有两个条件:一是达到沸点,二是继续吸热。如果"抽薪"以后,便能制止液体沸腾。

  17、墙内开花墙外香――由于分了在不停的做无规则的运动,墙内的花香就会扩散到墙外。

  18、坐井观天 所见甚少――由于光沿直线传播,由几何作图知识可知,青蛙的视野将很小。

  19、如坐针毡――由压强公式可知,当压力一定时,如果受力面积越小,则压强越大。人坐在这样的毡子上就会感觉极不舒服。

  20、瑞雪照丰年――下到地上的雪有许多松散的空隙,里面充满着不流动的空气,是热的不良导体,当它覆盖在农作物上时,可以很好的防止热传导和空气对流,因此能起到保温作用。

  21、霜前冷,雪后寒――在深秋的夜晚,地面附近的空气温度骤然变冷(温度低于0℃以下),空气中的水蒸气凝华成小冰晶,附着在地面上形成霜,所以有"霜前冷"的感觉。雪熔化时要需吸收热量,使空气的温度降低,所以我们有"雪后寒"的感觉。

  22、一滴水可见太阳,一件事可见精神――一滴水相当于一个凸透镜,根据凸透镜成像的规律,透过一滴水可以有太阳的像,小中见大。

  23、鸡蛋碰石头――自不量力――鸡蛋碰石头,虽然力的大小相同,但每个物体所能承受的压强一定,超过这个限度,物体就可能被损坏。鸡蛋能承受的压强小,所以鸡蛋将破裂。

  24、纸里包不住火――纸达到燃点就会燃烧。

  25、有麝自然香,何须迎风扬――气体的扩散现象。

  26、玉不琢不成器――玉石没有研磨之前,其表面凸凹不平,光线发生漫反射,玉石研磨以后,其表面平滑,光线发生镜面反射。

  27、扇子有凉风,宜夏不宜冬――夏天扇扇子时,加快了空气的流动,使人体表面的汗液蒸发加快,由于蒸发吸热,所以人感到凉快。

  28、人往高处走,水往低处流――水往低处流是自然界中的一条客观规律,原因是水受重力影响由高处流向低处

  29、水缸出汗,不用挑担――水缸中的水由于蒸发,水面以下部分温度比空气温度低,空气中的水蒸气遇到温度较低的外表面就产生了液化现象,水珠附在水缸外面.晴天时由于空气中水蒸气含量少,虽然也会在水缸外表面液化,但微量的液化很快又蒸发了,不能形成水珠.而如果空气潮湿,水蒸发就很慢,水缸外表面的液化大于汽化,就有水珠出现了.空气中水蒸气含量大,降雨的可能性大,当然不需要挑水浇地了。

  30、下雪不寒化雪寒――雪是高空中的水蒸气凝华或水滴凝固形成的,凝华、凝固都是放热过程,化雪是融化过程,要吸热。

  31、雪落高山,霜降平原――下雪天,高山气温低于山下平地气温,下到高山的雪不易融化,而下到平地的雪易及时融化.所以下同样的雪,高山上比平地多.霜是地面上的水蒸气遇冷凝华的结果,山下平地表面上的水蒸气比高山上多,故平地易

}

《光的吸收、散射和色散基本概述》由会员分享,可在线阅读,更多相关《光的吸收、散射和色散基本概述(51页珍藏版)》请在人人文库网上搜索。

1、1了解电偶极子模型及其对反射和折射现象、布了解电偶极子模型及其对反射和折射现象、布儒斯特定律的解释儒斯特定律的解释; 2理解光的吸收的原因,朗伯定律,吸收光谱理解光的吸收的原因,朗伯定律,吸收光谱; 3理解光的散射的原因,散射的分类及其特性理解光的散射的原因,散射的分类及其特性; 4理解色散的特点,正常色散和反常色散的原因理解色散的特点,正常色散和反常色散的原因; 5了解电偶极子振子模型及其经典电子理论对光了解电偶极子振子模型及其经典电子理论对光的吸收、散射和色散的解释的吸收、散射和色散的解释.教教 学学 目目 标标 当光波在媒质中传播时,由于光波和物当光波在媒质中传播时,由于光波和物质的相互

2、作用,一般呈现两种效应,一种是质的相互作用,一般呈现两种效应,一种是速度减慢引起的折射和双折射现象;另一种速度减慢引起的折射和双折射现象;另一种是光能减弱的消光是光能减弱的消光 (extinction)现象。消光现现象。消光现象中,将光能转换成其它形式的能量,是吸象中,将光能转换成其它形式的能量,是吸收收 (absorption)现象;而有部分光波沿其它方现象;而有部分光波沿其它方向传播,是散射向传播,是散射 (scattering)现象。对于沿原现象。对于沿原方向传播的光波来说,这两种现象都使光能方向传播的光波来说,这两种现象都使光能减弱,起消光作用。减弱,起消光作用。 除真空外,任何介质对

3、电磁波都不是绝除真空外,任何介质对电磁波都不是绝对透明。这是由于光通过介质时光通过物质时对透明。这是由于光通过介质时光通过物质时其传播情况就会发生变化:其传播情况就会发生变化: 光束越深入物质,强度将越减弱光束越深入物质,强度将越减弱光的能量被物质吸收光的能量被物质吸收光的吸收光的吸收光向各个方向散射光向各个方向散射光的散射。光的散射。 光在物质中传播的速度将小于真空中的光在物质中传播的速度将小于真空中的速度且随频率而变化速度且随频率而变化光的色散。光的色散。光和物质的相互作用是不同物质光学性光和物质的相互作用是不同物质光学性质的主要表现质的主要表现光的吸收、散射和色散都光的吸收、散射和色散都

4、是由光和物质中的原子中电子的相互作用是由光和物质中的原子中电子的相互作用.一一. . 电偶极子模型电偶极子模型 6.1 电偶极子辐射对反射和折射现象的解释电偶极子辐射对反射和折射现象的解释光照射物质时,策动物质中的电子和原子核振荡,由光照射物质时,策动物质中的电子和原子核振荡,由于核的质量比电子重得多,故只考虑电子的振荡即于核的质量比电子重得多,故只考虑电子的振荡即: 电偶极子振荡电偶极子振荡在经典理论中是不能完全正确地解释光和物质相互作在经典理论中是不能完全正确地解释光和物质相互作用关系,但是可以简单而直观说明有关物质光学性质用关系,但是可以简单而直观说明有关物质光学性质的许多主要现象。的许

-振荡偶极子周围的电磁场振荡偶极子周围的电磁场如图:用球坐标来表示电偶极子向周围辐如图:用球坐标来表示电偶极子向周围辐射的电磁波的矢量关系,电偶极子的电矩射的电磁波的矢量关系,电偶极子的电矩矢量矢量P沿着沿着Z轴,沿任一方向轴,沿任一方向(极角为极角为)的的波的电矢量波的电矢量E沿着经线,磁矢量沿着经线,磁矢量H沿着纬沿着纬线,各处的波都是平面偏振的线,各处的波都是平面偏振的式中式中e为电子所带的电量,为电子所带的电量,z为电子离开原点的距离,为电子离开原点的距离,为电子为电子振动的圆频率,并设正电荷静止

6、在坐标原点。振动的圆频率,并设正电荷静止在坐标原点。 在电动力学中,在电动力学中,可以证明电偶极子所辐射的电磁波的电矢量和磁矢量的值各可以证明电偶极子所辐射的电磁波的电矢量和磁矢量的值各为为:reprrezp tAzcos)(cossin4220cRtRceAE-qcEH0坡印廷矢量的绝对值为坡印廷矢量的绝对值为 : ( 是电磁波能是电磁波能流密度矢量,叫做坡印廷矢量流密度矢量,叫做坡印廷矢量 )HESrrr201EcEHHESrr坡印廷矢量的平均值坡印廷矢量的平均值(波的强度波的强度)qsin321cRAeEcISR表示观察者离偶极子的距离表示观察者离偶极子的距离光在半径为

7、光在半径为R的球面上各点的相位都的球面上各点的相位都相等,且相位较原点处落后了相等,且相位较原点处落后了R/c但是振幅随但是振幅随角而变,这就引起波的角而变,这就引起波的强度强度I(能流密度能流密度)在同一波面上的不在同一波面上的不均匀分布。如图均匀分布。如图解释解释1:均匀介质中的直线传播定律:均匀介质中的直线传播定律. i. 分子线度很小(分子线度很小(d 10-8cm, 10-5cm) . 在一个分子在一个分子的不同部分上的不同部分上, 入射光的位相差可以忽略不计入射光的位相差可以忽略不计.ii. 分子作受迫振动分子作受迫振动,发出电磁波,发出电磁波(偶极振子模型偶极振子模型)iii.

8、可证明可证明.只要分子的密度是均匀的只要分子的密度是均匀的,次波相干迭加次波相干迭加的结果只剩下遵从几何光学规律的光线的结果只剩下遵从几何光学规律的光线. 沿其余沿其余的振动干涉相消的振动干涉相消 用半波带概念用半波带概念.iv. 用惠更斯用惠更斯 菲涅耳原理可解释菲涅耳原理可解释. 但此处的但此处的“次波次波”有真实的振源有真实的振源.二二. . 电偶极辐射对反射和折射现象的初步解释电偶极辐射对反射和折射现象的初步解释 解释解释2:反射、折射定律:反射、折射定律解释解释3:布儒斯特定律:布儒斯特定律反射和折射是由于两种介质界面上分子性质的不连续性而引反射和折射是由于两种介质界面上分子性质的不

9、连续性而引起的。介质不同起的。介质不同, 辐射阻尼力不同辐射阻尼力不同, 故在不同介质中有不同的故在不同介质中有不同的波速(相速)造成合成波等相位面的改变波速(相速)造成合成波等相位面的改变.反射光:反射光:002| q qq qsinI如图:它表示在折射率为如图:它表示在折射率为n2的介质中,一个分的介质中,一个分子电偶极子在子电偶极子在E2的作用下,沿着平行于的作用下,沿着平行于E2的的Z轴方向做受迫振动时所辐射的轴方向做受迫振动时所辐射的“次波次波”,当反,当反射光方向恰和射光方向恰和Z轴平行,因而在这个方向上没轴平行,因而在这个方向上没有有“次波。次波。”所以没有反射光。所以没有反射光

10、。6.2 光的吸收光的吸收光光通通过过介介质质时时 光强度减小光强度减小 散射散射 吸收吸收 成彩色成彩色. 色散色散 n(0,) (入射光频率入射光频率) 速度变慢或弯曲速度变慢或弯曲. n 不同不同.出现折射和双折出现折射和双折射现象、反射射现象、反射 一、一般吸收和选择吸收一、一般吸收和选择吸收 1. 一般吸收:在一定的波长范围内,若某种媒质对一般吸收:在一定的波长范围内,若某种媒质对于通过它的各种波长的光波都作等量于通过它的各种波长的光波都作等量(指能量指能量)吸收且吸收且吸收量很小,则称这种媒质具有一般吸收性即吸收量很小,则称这种媒质具有一般吸收性即 对各对各个波长的光个波长的光,

11、吸收都相同吸收都相同. 其特点:光波几乎能透射,即通常的透明体其特点:光波几乎能透射,即通常的透明体2.2.选择吸收选择吸收:若媒质吸收某种波长的光能比较显著,:若媒质吸收某种波长的光能比较显著,并且随波长变化而剧烈变化。称它具有选择吸收并且随波长变化而剧烈变化。称它具有选择吸收。即对个别波长即对个别波长、波段的光波段的光, 有强烈吸收有强烈吸收. 任一物质对光的吸收都由这两种吸收组成。任一物质对光的吸收都由这两种吸收组成。选择吸收性是物体呈现颜色的主要原因选择吸收性是物体呈现颜色的主要原因例如例如:绿色玻璃是把入射的白色光中的红色光和蓝色绿色玻璃是把入射的白色光中的红色光和蓝色光吸收掉光吸收

}

我要回帖

更多关于 透射光干涉加强 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信