求碰撞测试车速多少初始速度,求计算过程

典型交通事故形态车辆行驶速度技术鉴定 GA/T643 —2006 目次 TOC \o "1-5" \h \z 前言 ii 范围 1 规范性引用文件 1 术语和定义 1 车辆行驶速度技术鉴定的要求 1 典型交通事故形态车辆行驶速度技术鉴定方法 1 汽车与汽车正面碰撞类型车辆行驶速度计算 2 汽车与汽车追尾碰撞类型车辆行驶速度计算 2 汽车与汽车直角侧面碰撞类型车辆行驶速度计算 2 摩托车与汽车车身侧面碰撞类型车辆行驶速度计算 3 汽车与二轮摩托车或自行车侧面碰撞类型车辆行驶速度计算 …3 汽车与自行车追尾碰撞类型车辆行驶速度计算 3 汽车与行人碰撞类型车辆行驶速度计算 ………………………4 路外坠车类型车辆行驶速度计算 ……………………………4 汽车撞固定物类型车辆行驶速度计 ………………………………………4 …6…8附录a (资料性附录)交通事故车辆行驶速度技术鉴定常用基础公式速查表 附录b (资料性附录)典型交通事故形态车辆事故前瞬时速度计算方法 参考文献 ………………………………………… 15 …6 …8 、八 前言 本标准附录a、附录b为资料性附录。 本标准由公安部道路交通管理标准化技术委员会提出并归口。 本标准负责起草单位:公安部交通管理科学研究所。 本标准参加起草单位: 新疆石河子市公安交通科研所、 清华大学汽车研究所、 浙 江省公安厅交通警察总队。 本标准主要起草人:龚标、张爱红、张彦辉、袁泉、赵斌、王长君、崔小平、王 界茂、史占彪。 典型交通事故形态车辆行驶速度技术鉴定 范围 本标准规定了典型交通事故形态车辆行驶速度技术鉴定的要求, 给出了典型交通 事故形态车辆行驶速度的鉴定方法。 本标准适用于公安机关交通管理部门指派或委托的专业技术人员、 鉴定机构对车 辆行驶速度的技术鉴定。 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。 凡是注日期的引用文 件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准;然 而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。 凡是 不注日期的引用文件,其最新版本适用于本标准。 ga40 交通事故案卷文书 术语和定义 下列术语和定义适用于本标准。 collision speed 从交通事故车辆发生碰撞至各车达到相同速度时各车辆所产生的速度变化。 制动协调时间 brake harmony time 535 汽车与汽车直角侧面碰撞类型车辆碰撞前的瞬时速度计算可以参见附录 b表b.1中3的推荐计算方法。 图3汽车与汽车直角侧面碰撞示意图 摩托车与汽车车身侧面碰撞类型车辆行驶速度计算 摩托车与汽车车身侧面碰撞示意图见图 4。 根据汽车从碰撞地点至停止地点的滑移距离,依据能量守恒定律,可以 计算出汽车碰撞后的瞬时速度。 汽车碰撞后侧向运动状态有改变时,可以根据摩托车与汽车行驶方向上 的动量守恒定理方程式,计算出两车碰撞前的瞬时速度。 如汽车或摩托车碰撞前无滑移痕迹,则碰撞前的瞬时速度可视为等于车 辆行驶速度;如汽车或摩托车碰撞前有滑移痕迹,则进一步根据滑移距离计算出 车辆行驶速度。 汽车碰撞后侧向运动状态有改变时,摩托车撞击汽车侧面类型车辆碰撞 前的瞬时速度计算可以参见附录 b表b.1中4的推荐计算方法;根据摩托车轴距 减少量计算摩托车碰撞轿车侧面时碰撞前的瞬时速度可以参见附录 b表b.1中5 的推荐计算方法。 图4摩托车与汽车车身侧面碰撞示意图 汽车与二轮摩托车或自行车侧面碰撞类型车辆行驶速度计算 汽车与二轮摩托车或自行车侧面碰撞示意图见图 5。 根据二轮摩托车或自行车、汽车、驾驶人或乘坐人碰撞后的移动距离, 依据能量守恒定律,可以计算出各自碰撞后的瞬时速度。 根据二轮摩托车或自行车与汽车行驶方向上的动量守恒定理方程式,计 算出两车碰撞前的瞬时速度。 如汽车或二轮摩托车碰撞前无滑移痕迹,则碰撞前的瞬时速度可视为等 于车辆行驶速度;如汽车或二轮摩托车碰撞前有滑移痕迹, 则进一步根据滑移距 离计算出车辆行驶速度。 汽车与二轮摩托车或自行车质心侧面碰撞类型车辆碰撞前的瞬时速度计 算可以参见附录b表b.1中6的推荐计算方法;汽车与二轮摩托车或自行车质心 的前侧侧面碰撞类型车辆碰撞前的瞬时速度计算可以参见附录 b表b.1中7的推 荐计算方法。 图5汽车与二轮摩

}

上次写这篇文章的时候也差不多是一年前了,这一年我兜兜转转从android到java又回到android,校招面了很多大厂,阿里、京东、小米、头条、知乎、腾讯、有赞,也收获了几个offer。感谢大家的关注,让我在简书上面也混到了一个简书程序员优秀作者的称号,所以为了回馈大家,一篇最完全的android面经诞生了。这是我集合了牛客网、百度、简书等网站的几十篇面经和我自己面试的经历的合集,希望大家喜欢。(ps:里面当然会有纰漏,如果有问题欢迎大家留言或者加我QQ讨论)

事件分发(面试).png

  • 1.:这是我总结的一篇博客

  • 1.standard:默认标准模式,每启动一个都会创建一个实例,

  • 1.这个题目需要深入了解activity的启动模式
  • 2.最后的答案是:两个栈,前台栈是只有D,后台栈从底至上是A、B、C

  • 2.内存不足杀掉Activity,优先级分别是:前台可见,可见非前台,后台。

    • 4.如果是调用者自己直接退出而没有调用stopService的话,Service会一直在后台运行。该Service的调用者再启动起来后可以通过stopService关闭Service。
    • 1.onBind将返回给客户端一个IBind接口实例,IBind允许客户端回调服务的方法,比如得到Service运行的状态或其他操作。

  • 1.动态的比静态的安全
  • 2.静态在app启动的时候就初始化了 动态使用代码初始化
  • 3.静态需要配置 动态不需要
  • 4.生存期,静态广播的生存期可以比动态广播的长很多
  • 5.优先级动态广播的优先级比静态广播高

  • 2.JSON相对于XML来讲,数据的体积小
  • 3.JSON对数据的描述性比XML较差
  • 4.解析的基本原理是:词法分析

12.一个语言的编译过程

  • 1.词法分析:将一串文本按规则分割成最小的结构,关键字、标识符、运算符、界符和常量等。一般实现方法是自动机和正则表达式
  • 2.语法分析:将一系列单词组合成语法树。一般实现方法有自顶向下和自底向上
  • 3.语义分析:对结构上正确的源程序进行上下文有关性质的审查
  • 5.代码优化:优化生成的目标代码,

  • 1.动画的基本原理:其实就是利用插值器和估值器,来计算出各个时刻View的属性,然后通过改变View的属性来,实现View的动画效果。
  • 2.View动画:只是影像变化,view的实际位置还在原来的地方。
  • 3.帧动画是在xml中定义好一系列图片之后,使用AnimationDrawable来播放的动画。
    • 1.插值器:作用是根据时间的流逝的百分比来计算属性改变的百分比
    • 2.估值器:在1的基础上由这个东西来计算出属性到底变化了多少数值的类

  • 1.MessageQueue:读取会自动删除消息,单链表维护,在插入和删除上有优势。在其next()中会无限循环,不断判断是否有消息,有就返回这条消息并移除。
  • 4.系统的主线程在ActivityThread的main()为入口开启主线程,其中定义了内部类Activity.H定义了一系列消息类型,包含四大组件的启动停止。

    • 2.当不属于同个进程,那么要用到AIDL让系统给我们创建一个Binder,然后在Activity中对远端的Service进行操作。
  • 2.系统给我们生成的Binder:
  • 3.哪一端的Binder是副本,该端就可以被另一端进行操作,因为Binder本体在定义的时候可以操作本端的东西。所以可以在Activity端传入本端的Binder,让Service端对其进行操作称为Listener,可以用RemoteCallbackList这个容器来装Listener,防止Listener因为经历过序列化而产生的问题。
  • 4.当Activity端向远端进行调用的时候,当前线程会挂起,当方法处理完毕才会唤醒。
  • 5.如果一个AIDL就用一个Service太奢侈,所以可以使用Binder池的方式,建立一个AIDL其中的方法是返回IBinder,然后根据方法中传入的参数返回具体的AIDL。
  • 6.IPC的方式有:Bundle(在Intent启动的时候传入,不过是一次性的),文件共享(对于SharedPreference是特例,因为其在内存中会有缓存),使用Messenger(其底层用的也是AIDL,同理要操作哪端,就在哪端定义Messenger),AIDL,ContentProvider(在本进程中继承实现一个ContentProvider,在增删改查方法中调用本进程的SQLite,在其他进程中查询),Socket

17.描述一次跨进程通讯

  • 3.clinet获取的service信息就是该service的proxy,此时调用proxy的方法,proxy将请求发送到BinderDriver中,此时service的 Binder线程池循环发现有自己的请求,然后用impl就处理这个请求最后返回,这样完成了第二次Binder通讯 4.中间client可挂起,也可以不挂起,有一个关键字oneway可以解决这个

    • 3.实现一个ImageLoader的流程:同步异步加载、图片压缩、内存硬盘缓存、网络拉取
      • 1.同步加载只创建一个线程然后按照顺序进行图片加载
      • 2.异步加载使用线程池,让存在的加载任务都处于不同线程
      • 3.为了不开启过多的异步任务,只在列表静止的时候开启图片加载

  • 1.缓存队列,以url为key缓存内容可以参考Bitmap的处理方式,这里单独开启一个线程。
  • 2.网络请求队列,使用线程池进行请求。
  • 3.提供各种不同类型的返回值的解析如String,Json,图片等等。

  • 1.双亲委托:一个ClassLoader类负责加载这个类所涉及的所有类,在加载的时候会判断该类是否已经被加载过,然后会递归去他父ClassLoader中找。
  • 4.加载不同Jar包中的公共类:
  • 3.在生成包含公共Jar的Jar时候把公共Jar去掉。

  • 2.如何加载资源是个很大的问题,因为宿主程序中并没有apk中的资源,所以调用R资源会报错,所以这里使用了Activity中的实现ContextImpl的getAssets()和getResources()再加上反射来实现。
  • 3.由于系统启动Activity有很多初始化动作要做,而我们手动反射很难完成,所以可以采用接口机制,将Activity的大部分生命周期提取成接口,然后通过代理Activity去调用插件Activity的生命周期。同时如果像增加一个新生命周期方法的时候,只需要在接口中和代理中声明一下就行。
    • 1.慎用this,因为在apk中使用this并不代表宿主中的activity,当然如果this只是表示自己的接口还是可以的。除此之外可以使用that代替this。

  • 1.大致原理:apkpatch将两个apk做一次对比,然后找出不同的部分。可以看到生成的apatch了文件,后缀改成zip再解压开,里面有一个dex文件。通过jadx查看一下源码,里面就是被修复的代码所在的类文件,这些更改过的类都加上了一个_CF的后缀,并且变动的方法都被加上了一个叫@MethodReplace的annotation,通过clazz和method指定了需要替换的方法。然后客户端sdk得到补丁文件后就会根据annotation来寻找需要替换的方法。最后由JNI层完成方法的替换。
  • 2.无法添加新类和新的字段、补丁文件很容易被反编译、加固平台可能会使热补丁功能失效

  • 1.sycn:保证了原子性、可见性、有序性
  • 2.锁:保证了原子性、可见性、有序性
    • 1.自旋锁:可以使线程在没有取得锁的时候,不被挂起,而转去执行一个空循环。
      • 1.优点:线程被挂起的几率减少,线程执行的连贯性加强。用于对于锁竞争不是很激烈,锁占用时间很短的并发线程。
      • 2.缺点:过多浪费CPU时间,有一个线程连续两次试图获得自旋锁引起死锁
    • 2.阻塞锁:没得到锁的线程等待或者挂起,Sycn、Lock
    • 3.可重入锁:一个线程可多次获取该锁,Sycn、Lock
    • 4.悲观锁:每次去拿数据的时候都认为别人会修改,所以会阻塞全部其他线程 Sycn、Lock
    • 5.乐观锁:每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。cas
    • 6.显示锁和内置锁:显示锁用Lock来定义、内置锁用synchronized。
    • 7.读-写锁:为了提高性能,Java提供了读
    • 1.只能保证可见性,不能保证原子性
    • 2.自增操作有三步,此时多线程写会出现问题
    • 1.操作:内存值V、旧的预期值A、要修改的值B,当且仅当预期值A和内存值V相同时,将内存值修改为B并返回true,否则什么都不做并返回false。
    • 2.解释:本地副本为A,共享内存为V,线程A要把V修改成B。某个时刻线程A要把V修改成B,如果A和V不同那么就表示有其他线程在修改V,此时就表示修改失败,否则表示没有其他线程修改,那么把V改成B。
    • 3.局限:如果V被修改成V1然后又被改成V,此时cas识别不出变化,还是认为没有其他线程在修改V,此时就会有问题
    • 4.局限解决:将V带上版本。
  • 5.线程不安全到底是怎么回事:
    • 1.一个线程写,多个线程读的时候,会造成写了一半就去读
    • 2.多线程写,会造成脏数据

      • 2.图搜索,可达性分析
      • 1.标记清除复制:用于青年代
      • 2.标记整理:用于老年代
      • 1.虚拟机栈(栈桢中的本地变量表)中的引用的对象
      • 2.方法区中的类静态属性引用的对象
      • 3.方法区中的常量引用的对象
      • 4.本地方法栈中JNI的引用的对象

  • 1.ARP协议:在IP以太网中,当一个上层协议要发包时,有了该节点的IP地址,ARP就能提供该节点的MAC地址。
    • 3.它的工作流程一般如以下方式:
      • 1.完成TCP三次同步握手
      • 2.客户端验证服务器数字证书,通过,进入步骤3
      • 3.DH算法协商对称加密算法的密钥、hash算法的密钥
      • 4.SSL安全加密隧道协商完成
      • 5.网页以加密的方式传输,用协商的对称加密算法和密钥加密,保证数据机密性;用协商的hash算法进行数据完整性保护,保证数据不被篡改
    • 3.http请求包结构,http返回码的分类,400和500的区别
        • 1.请求:请求行、头部、数据
        • 2.返回:状态行、头部、数据
    • 2.http返回码分类:1到5分别是,消息、成功、重定向、客户端错误、服务端错误
    • 1.可靠连接,三次握手,四次挥手
      • 1.三次握手:防止了服务器端的一直等待而浪费资源,例如只是两次握手,如果s确认之后c就掉线了,那么s就会浪费资源
  • 2.四次挥手:TCP是全双工模式
  • 2.ack-s = x + 1,表示需要关闭的fin-c消息已经接收到了,同意关闭
  • 3.fin-s = y + 1,表示s已经准备好关闭了,就等c的最后一条命令
  • 3.滑动窗口,停止等待、后退N、选择重传
  • 4.拥塞控制,慢启动、拥塞避免、加速递减、快重传快恢复

  • 4.将全部class文件和第三方包合并成dex文件
  • 5.将资源、so文件、dex文件整合成apk

  • 1.DNS劫持、欺骗、污染
  • 2.http劫持:重定向、注入js,http注入、报文扩展

  • 1.加载时机:创建实例、访问静态变量或方法、反射、加载子类之前
  • 2.验证:验证文件格式、元数据、字节码、符号引用的正确性
  • 3.加载:根据全类名获取文件字节流、将字节流转化为静态储存结构放入方法区、生成class对象
  • 4.准备:在堆上为静态变量划分内存
  • 5.解析:将常量池中的符号引用转换为直接引用
  • 6.初始化:初始化静态变量
  • 7.书籍推荐:深入理解java虚拟机,博客推荐:

  • 1.动态代理创建一个接口的代理类
  • 2.通过反射解析每个接口的注解、入参构造http请求
  • 3.获取到返回的http请求,使用Adapter解析成需要的返回值。

  • 2.传递的数据可以是boolean、byte、int、long、float、double、string等基本类型或它们对应的数组,也可以是对象或对象数组。

    • 2.没拦截,事件到达了button,这个过程中建立了一条事件传递的view链表
  • 2.移动点击按钮的时候:
  • 2.此时listView会将该滑动事件消费掉
  • 3.后续的滑动事件都会被listView消费掉
  • 3.手指抬起来时候:前面建立了一个view链表,listView的父view在获取事件的时候,会直接取链表中的listView让其进行事件消耗。

  • 2.操作系统进程通讯方式:共享内存、socket、管道

  • 1.简而言之,一个程序至少有一个进程,一个进程至少有一个线程.
  • 2.线程的划分尺度小于进程,使得多线程程序的并发性高。
  • 3.另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
  • 4.多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配

  • 1.简单来说HashMap就是一个会自动扩容的数组链表
    • 2.如果没碰撞直接放到bucket里;
    • 3.如果碰撞了,以链表的形式存在buckets后;
    • 4.如果碰撞导致链表过长(大于等于TREEIFY_THRESHOLD),就把链表转换成红黑树;
    • 5.如果节点已经存在就替换old value(保证key的唯一性)
  • 3.resize:当put时,如果发现目前的bucket占用程度已经超过了Load Factor所希望的比例,那么就会发生resize。在resize的过程,简单的说就是把bucket扩充为2倍,之后重新计算index,把节点再放到新的bucket中
    • 2.使用equals遍历链表进行比较

    • 1.viewModel的业务逻辑可以单独拿来测试
    • 2.一个view 对应一个 viewModel 业务逻辑可以分离,不会出现全能类
    • 3.数据和界面绑定了,不用写垃圾代码,但是复用起来不舒服

  • 1.简单来讲,要使用UDP来构建可靠的面向连接的数据传输,就要实现类似于TCP协议的超时重传,有序接受,应答确认,滑动窗口流量控制等机制,等于说要在传输层的上一层(或者直接在应用层)实现TCP协议的可靠数据传输机制。
  • 2.比如使用UDP数据包+序列号,UDP数据包+时间戳等方法,在服务器端进行应答确认机制,这样就会保证不可靠的UDP协议进行可靠的数据传输。

  • 1.因为内部类创建的时候,需要外部类的对象,在内部类对象创建的时候会把外部类的引用传递进去

  • 1.root节点和叶子节点是黑色
  • 2.红色节点后必须为黑色节点
  • 3.从root到叶子每条路径的黑节点数量相同

  • 1.同步:对于client,client一直等待,但是client不挂起:主线程调用
  • 2.异步:对于client,client发起请求,service好了再回调client:其他线程调用,调用完成之后进行回调
  • 3.阻塞:对于service,在准备io的时候会将service端挂起,直至准备完成然后唤醒service:bio
  • 3.非阻塞:对于service,在准备io的时候不会将service端挂起,而是service一直去轮询判断io是否准备完成,准备完成了就进行操作:nio、linux的select、poll、epoll
  • 4.多路复用io:非阻塞io的一种优化,java nio,用一个线程去轮询多个 io端口是否可用,如果一个可用就通知对应的io请求,这使用一个线程轮询可以大大增强性能。
    • 1.我可以采用 多线程+ 阻塞IO 达到类似的效果,但是由于在多线程 + 阻塞IO 中,每个socket对应一个线程,这样会造成很大的资源占用。
    • 2.而在多路复用IO中,轮询每个socket状态是内核在进行的,这个效率要比用户线程要高的多。
  • 5.异步io:aio,用户线程完全不感知io的进行,所有操作都交给内核,io完成之后内核通知用户线程。
    • 1.这种io才是异步的,2、3、4都是同步io,因为内核进行数据拷贝的过程都会让用户线程阻塞。
    • 2.异步IO是需要操作系统的底层支持,也就是内核支持,Java 7中,提供了Asynchronous IO

  • 1.HashTable容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有访问HashTable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。
  • 一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。

  • 1.dvm执行的是dex格式文件,jvm执行的是class文件,android程序编译完之后生产class文件。然后dex工具会把class文件处理成dex文件,然后把资源文件和.dex文件等打包成apk文件。
  • 2.dvm是基于寄存器的虚拟机,而jvm执行是基于虚拟栈的虚拟机。寄存器存取速度比栈快的多,dvm可以根据硬件实现最大的优化,比较适合移动设备。
  • 3.class文件存在很多的冗余信息,dex工具会去除冗余信息,并把所有的class文件整合到dex文件中。减少了I/O操作,提高了类的查找速度

  • 1.其他线程持有一个Listener,Listener操作activity。那么在线程么有完毕的时候,activity关闭了,原本是要被回收的但是,不能被回收。
  • 3.在activity关闭的时候注意停止线程,或者将Listener的注册取消
  • 3.使用弱引用,这样即使Listener持有了activity,在GC的时候还是会被回收

52.过度绘制、卡顿优化:

    • 3.减少布局嵌套(扁平化的一个体现,减少View数的深度,也就减少了View树的遍历时间,渲染的时候,前后期的工作,总是按View树结点来)
  • 2.卡顿优化:16ms数据更新

  • 1.classes.dex:通过代码混淆,删掉不必要的jar包和代码实现该文件的优化
  • 2.资源文件:通过Lint工具扫描代码中没有使用到的静态资源
  • 3.图片资源:使用tinypng和webP,下面详细介绍图片资源优化的方案,矢量图
  • 4.SO文件将不用的去掉,目前主流app一般只放一个arm的so包

  • 1.只要是主线程耗时的操作就会ARN 如io

  • 2.网络传输用S 程序内使用P
  • 3.S将数据持久化方便
  • 4.S使用了反射 容易触发垃圾回收 比较慢
  • 1.储存于硬盘上的xml键值对,数据多了会有性能问题
  • 3.在xml文件全部内加载到内存中之前,读取操作是阻塞的,在xml文件全部内加载到内存中之后,是直接读取内存中的数据
  • 4.apply因为是异步的没有返回值, commit是同步的有返回值能知道修改是否提交成功
  • 5.多并发的提交commit时,需等待正在处理的commit数据更新到磁盘文件后才会继续往下执行,从而降低效率; 而apply只是原子更新到内存,后调用apply函数会直接覆盖前面内存数据,从一定程度上提高很多效率。 3.edit()每次都是创建新的EditorImpl对象.

  • 1.使用寄存器进行将进程地址和物理内存进行映射
  • 2.虚拟内存进行内存映射到硬盘上增大内存
  • 3.虚拟内存是进行内存分页管理
  • 4.页表实现分页,就是 页+地址偏移。
  • 5.如果程序的内存在硬盘上,那么就需要用页置换算法来将其调入内存中:先进先出、最近未使用最少等等

  • 4.服务器处理请求并返回HTTP报文
  • 5.浏览器解析渲染页面

  • 2.PECS,extends善于提供精确的对象 A是B的子集,Super善于插入精确的对象 A是B的超集

  • 1.快排、堆排序为首的各种排序算法
  • 2.链表的各种操作:判断成环、判断相交、合并链表、倒数K个节点、寻找成环节点
  • 3.二叉树、红黑树、B树定义以及时间复杂度计算方式
  • 4.动态规划、贪心算法、简单的图论
  • 5.推荐书籍:算法导论,将图论之前的例子写一遍

      • 2.Drawable分为:容器类(保存一些Drawable)、自我绘制类(进度条)、图形变换类(scale、rotate、矩阵变换)、动画类(内部不断刷新,进行webp和gif的帧绘制)
      • 4.webp和gif动画是由jni代码解析的,然后其他静态图片是根据不同的android平台使用BitmapFactory来解析的
      • 1.一个CountingLruMap保存已经没有被引用的缓存条目,一个CountingLruMap保存所有的条目包括没有引用的条目。每当缓存策略改变和一定时间缓存配置的更新的时候,就会将 待销毁条目Map中的条目一个个移除,直到缓存大小符合配置。
      • 2.这里的引用计数是用Fresco组件实现的引用计数器。
      • 3.缓存有一个代理类,用来追踪缓存的存取。
      • 2.为了不让所有的文件集中在一个文件中,创建很多命名不同的文件夹,然后使用hash算法把缓存文件分散
      • 3.DiskStorageCache封装了DefaultDiskStorage,不仅进行缓存存取追踪,并且其在内存里面维持着一个 <key,value> 的键值对,因为文件修改频繁,所有只是定时刷新,因此如果在内存中找不到,还要去硬盘中找一次。
      • 4.删除硬盘的缓存只出现在硬盘数据大小超限的时候,此时同时也会删除缓存中的key,所以不会出现内存中有key,但是硬盘上没有的情况。
      • 5.在插入硬盘数据的时候,采用的是插入器的形式。返回一个Inserter,在Inserter.writeData()中传入一个CallBack(里面封装了客户端插入数据的逻辑和文件引用),让内部实现调用CallBack的逻辑来插入文件数据,前面写的文件后缀是.temp,只有调用commit()之后才会修改后缀,让文件对客户端可见。
      • 1.使用数组来存储一个桶,桶内部是一个Queue。数组下标是数据申请内存的byte大小,桶内部的Queue存的是内存块的。所以数组使用的是稀疏数组
      • 2.申请内存的方式有两种 1.java堆上开辟的内存 2.ashme 的本地内存中开辟的内存
    • 7.设计模式:Builder、职责链、观察者、代理、组合、享元、适配器、装饰者、策略、生产者消费者、提供者
    • 8.自定义计数引用:类似c++智能指针
    • 2.用SharedReference分装需要被计数引用的对象,提供一个销毁资源的销毁器,提供一个静态工厂方法来复制自己,复制一个引用计数加一。提供一个方法销毁自己,表示自己需要变成无人引用的对象了,此时引用计数减一。
    • 3.引用计数归零,销毁器将销毁资源,如bitmap的recycle或者是jni内存调用jni方法归还内存。
  • 9.博客推荐:、、、、
    • 1.异步使用了Dispatcher来将存储在 Deque 中的请求分派给线程池中各个线程执行。
    • 2.当任务执行完成后,无论是否有异常,finally代码段总会被执行,也就是会调用Dispatcher的finished函数,它将正在运行的任务Call从队列runningAsyncCalls中移除后,主动的把缓存队列向前走了一步。
  • 3.选择路线与建立连接
    • 1.选择路线有两种方式:
      • 1.无代理,那么在本地使用DNS查找到ip,注意结果是数组,即一个域名有多个IP,这就是自动重连的来源
      • 2.有代理HTTP:设置socket的ip为代理地址的ip,设置socket的端口为代理地址的端口
      • 3.代理好处:HTTP代理会帮你在远程服务器进行DNS查询,可以减少DNS劫持。
      • 1.连接池中已经存在连接,就从中取出(get)RealConnection,如果没有命中就进入下一步
  • 4.如果存在TLS,就根据SSL版本与证书进行安全握手
  • 4.职责链模式:缓存、重试、建立连接等功能存在于拦截器中网络请求相关,主要是网络请求优化。网络请求的时候遇到的问题
    • 5.Buffer:实现了3、4的缓存区域,内部有Segment的双向链表,在在转移数据的时候,只需要将指针转移指向就行
    • 1.减少内存申请和数据拷贝
    • 2.类少,功能齐全,开发效率高
    • 2.Segment的内部byte数组的共享,减少数据拷贝

写在最后:能看到这里的人,我挺佩服你的.这篇文章是我在头条面试之前整理的,最后80%的题目都命中了,所以祝你好运.

}

我要回帖

更多关于 碰撞测试车速多少 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信